Urinary System
kidneys, ureters, bladder & urethra

Kidney Function
Filters blood
- removes waste products
- conserves salts, glucose, proteins, nutrients and water

Produces urine

Endocrine functions
- regulates blood pressure
- produces
 - renin
 - erythropoietin
 - prostaglandins
- converts vitamin D to active form

Kidney Structure
Capsule
Hilum
- ureter → renal pelvis
 - major and minor calyxes
 - segmental arteries
 - interlobar arteries
 - arcuate arteries
 - interlobular arteries

Medulla
- renal pyramids
- cortical/renal columns

Cortex
- renal corpuscles
- cortical labyrinth of tubules
- medullary rays

Renal Lobe
- renal pyramid & overlying cortex

Renal Lobule
- medullary ray & surrounding cortical labyrinth

Uriniferous Tubule
Nephron + Collecting tubule

Nephron
Renal corpuscle produces glomerular ultrafiltrate (180 L per day) from blood

Ultrafiltrate is concentrated
- Proximal tubule
 - convoluted
 - straight
- Henle's loop
 - thick descending
 - thin
 - thick ascending
- Distal tubule
- Collecting tubule

Urine (1-2 L per day) secreted from collecting ducts into calyxes
Renal Cortex

Sobotta & Hammersen: Histology

Renal Cortex

Renal corpuscle

= glomerulus + Bowman’s capsule

Medullary ray = collecting tubules

Cortical labyrinth of tubules

Renal Corpuscle

Glomerulus

• fenestrated capillaries
• podocytes
• intraglomerular mesangial cells

Juxtaglomerular apparatus
• macula densa in distal tubule
• JG cells in afferent arteriole
• extraglomerular mesangial cells

Urinary / Bowman’s space

Bowman’s capsule

visceral layer

parietal layer

Glomerulus
Renal Corpuscle

Vascular pole

Urinary pole

Sobotta & Hammersen: Histology

Intraglomerular Mesangial Cells

• Support capillaries
• Phagocytose basal lamina
• Vasconstrict in response to angiotensin II

Urinary Filtration Membrane

• Endothelial cell
 - 70-90 nm fenestra restrict proteins > 70kd
• Basal lamina
 - heparan sulfate is negatively charged
 - produced by endothelial cells & podocytes
 - phagocytosed by mesangial cells
• Podocytes
 - pedicels 20-40 nm apart
 - diaphragm 6 nm thick with 3-5 nm slits
 - podocalyxin in glycocalyx is negatively charged

Podocytes

Urinary Membrane
Juxtaglomerular Apparatus

Macula densa in distal tubule
- Monitor Na⁺ content and volume in DT
- Low Na⁺:
 - Stimulates JG cells to secrete renin
 - Stimulates JG cells to dilate afferent arteriole
 - Tall, narrow columnar cells
 - Numerous microvilli

JG cells
- Secret renin into circulation
 - Renin converts angiotensinogen → angiotensin I
 - Lung is principal site of ACE activity
- Contain angiotensin converting enzyme (ACE)
- ACE converts angiotensin I → II
- Contain angiotensin I & II
 - Angiotensin II constricts vasculature and stimulates secretion of aldosterone and ADH
 - Primarily in afferent arteriole
 - Specialized smooth muscle cells
 - No basal lamina between JG cells & macula densa

Extraglomerular mesangial cells
- Also known as Polkissen or lacis cells

Proximal tubule
- Proximal convoluted tubule
- Thick descending limb

Henle’s loop
- Thin descending & ascending limbs

Distal tubule
- Thick ascending limb

Collecting tubule & duct

Proximal convoluted tubule
- Cuboidal (low to high) cells
- Eosinophilic granular cytoplasm
- Basal nuclei
- Elaborate brush/striated border
- Lateral interdigitations

- Resorbs 100% protein, amino acids, glucose, creatinine, and bicarbonate ions
- Resorbs 70-80% of Na⁺, Cl⁻, and water
- Na⁺/K⁺ pumps in basolateral membrane
- Na⁺ pumped into interstitium
- Cl⁻ and water follow
- Secretes waste products into lumen

Henle’s loop (thin segments)
- Squamous cells
- Slightly thicker than endothelial cells
- Few short microvilli
- Lateral interdigitations

- Descending limb
 - Highly permeable to water, salt and urea
- Ascending limb
 - Impermeable to water
 - Permeable to salt which enters interstitium
Distal Tubule
(DCT & thick ascending limb of Henle’s loop)

- Low cuboidal cells
- Clear pale cytoplasm
- Apical nuclei (DCT)
- Central nuclei (Henle’s loop)
- Numerous mitochondria
- Absent (or few short) microvilli
- Basal interdigitations
- Numerous zonula occludens
- Not permeable to water or urea
- Active Na+/K+ pumps (DCT)
 - Aldosterone stimulates salt resorption
 - H+ and K+ transported into lumen
- Active Cl− pumps (Henle’s thick)
 - Cl− enters interstitium (Na+ follows)

Renal Medulla

- Collecting tubules/ducts
- Henle’s loop (thin segments)
- Capillaries of vasa recta

Collecting Tubule & Duct

- Cuboidal to columnar cells
- Clear cytoplasm
- Central nuclei
- Permeable to urea
- In response to ADH, becomes permeable to water which enters the interstitium

Renal Cortex

Proximal tubule (convoluted) Distal tubule Proximal tubule (straight) Henle’s loop (thick)

Collecting tubule
Formation of Urine

Countercurrent Multiplier System

Increasing osmolality gradient exists from corticomedullary junction to deep in medulla

- **Descending thin limb of Henle** is freely permeable to water and salt
 - Due to increasing osmolality of interstitium: lumenal volume decreases and osmolarity increases
 - Ascending (thin and thick) limb of Henle and DCT are **not** permeable to water
 - Urea enters lumen
 - Cl⁻ pumped into interstitium (Na⁺ follows)
 - Increases salt deep in medulla
 - Urea becomes hypertonic as it ascends
 - Without ADH: collecting tubule/duct impermeable to water
 - ADH (pars nervosa of pituitary) makes collecting tubule/duct freely permeable to water and urea
 - Increases water resorption, decreases urine volume, and increases urine tonicity
 - Increases urea content deep in medulla to maintain interstitial osmolarity gradient

Angiotensin II Regulation of Blood Pressure

TABLE 19-2 Effects of Angiotensin II

<table>
<thead>
<tr>
<th>FUNCTION</th>
<th>RESULT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acts as a potent vasopressor</td>
<td>Increased blood pressure</td>
</tr>
</tbody>
</table>
| Facilitates synthesis and release of aldosterone | Resorption of sodium and chloride from luminal fluid
| Facilitates release of ADH | Resorption of water from lumen of collecting tubule |
| Increases thirst | Increased tissue fluid volume |
| Inhibits renin release | Feedback inhibition |
| Facilitates release of prostaglandins | Vascularization of afferent glomerular arterioles, thus maintaining glomerular filtration rate |
Atrial Natriuretic Peptide (ANP)
- Secreted by atrial cardiac myocytes
- Function
 - decreases renin release
 - decreases aldosterone release
 - blocks resorption salt and water
 - decreases blood pressure

Alcohol
- decreases ADH release

Caffeine
- increases salt resorption in DCT

Vasa Rectae
- Peritubular capillary system in medulla
- Freely permeable to water and salts
- Counter current exchange system: equilibrates contents of medullary interstitium and vasculature

Additional Regulators of Kidney Function

Vasculation of Kidney

Urine is excreted through
- Calyces and renal pelvis
- Ureters
- Urinary bladder (storage)
- Urethra

Netter: Atlas of Human Anatomy
Ureter
- Muscosa - transitional epithelium
- Lamina propria
- Muscularis – smooth muscle
 - Inner longitudinal
 - Middle circular
 - Outer longitudinal (lower 1/3)

Urinary Bladder
- Muscosa - transitional epithelium
- Lamina propria
- Muscularis – smooth muscle
 - Inner longitudinal
 - Middle circular
 - Outer longitudinal

Empty

Distended

Urethra
- Mucosa
 - varies from transitional to stratified columnar to pseudostratified columnar to stratified squamous in different regions
- Lamina propria
 - contains glands of Littre
 - highly vascularized
- External urethral sphincter of skeletal muscle
- In the male, 3 regions:
 - prostatic
 - membranous
 - penile or spongy